
P20-M.M TE NIM (OLT D~f iuEMK UN E NIlN) KNI.EE COISITIOU /1

PROJECT PHIS I F.. (U) BIN LABS INC C hIDGE AN
0 URETT ET lL. IMY 9? SN-6543 F306S2-05-C-GM65

UUCLASSIFIED F 12/5 I.

EminnulmmMu

II/l/lI/

Iillllll

LII
161101112 .

L 1.8

1.6.

low,

qw Iw q5 q

BBN Laboratories incororatifDC FILE COPY _

A Subsidiary~ of Bolt Be ranek and Ne\v mn n p _

Report No. 6543 D I

AD-A194 928 S U oL cT198

The BB1N Knowledge Acquisition Project:
Phase 1-Final Report;
Functional Description; Test Plan
Glenn Abrett and Mark H. Burstein

ApIrovPA fox :.i ..

May 1987

Prepared for:
Defense Advanced Research Projects Agency

8 % r

.~~~~~~~~~r~~~* % .~- : .~~ ~ : - % * --

SECURITY CLASSIFICATION OF THIS PAGCE Ien D ole Entere0R
REPORT DOCUMENTATION PAGE ORECO STRUCTIONS

DEWFORE COMPLETING FORM

I. REPORT "UmIsel a. GOVT ACCESSION NO. 9. RECIPIENT'S CATALOG NUMBER
BBN Report No. 65431

4. TITLE (ad SubItle) S. TYPE OF REPORT b PERIOD COVERED

THE BBN KNOWLEDGE ACQUISITION PROJECT: PHASE I- Phase I - Final Report .

FINAL REPORT; FUNCTIONAL DESCRIPTION; TEST PLAN 4 PRFORMNOORG REORT UMER
BBN Report No. 6543

7. AUTHOR) S. CONTRACT OR GRANT NUMERs)

Glenn Abrett and Mark H. Burstein F30602-85-C-0005 -

S. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK
BBN Laboratories Inc. AREAAWoRIUNTNUMER_

10 Moulton St.
Cambridge, MA 02238

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency May 1987

1400 Wilson Blvd. IS. NUNER OF PAGES
Arlington, VA 22209 48

Va. MONITORING AGENCY NAME 6 ADRESS0(I differet frome Controll~nd Office) IS. SECURITY CLASS. (of tle report)

Unclassified

1$0. DECLASSIFICATION DOWNGRADING
SCH4EDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

17. DISTRIBUTION STATEMENT (of the abetrect emtterd In Block 20. If diferent Item Report) A

I8 SUPPLEMENTARY NOTES

It. KEY WORDS (Cotinue o reere ede If necessary and Identity by block n.lber) •

Knowledge acquisition, knowledge editing, knowledge representation,
expert systems; strategic computing , .

A

20 ABSTRACT (Contnue an r rerse ide If neceaesary and Identify by block number)

This document presents the final report on Phase I of KREME, BBN's Knowledge
Representation, Editing and Modeling Environment. It includes a brief
functional description of KREME, a test plan that describes how, to load and
boot KREME, and two sample KREME networks. KREME was designed to handle
large knowledge bases, support experiments with knowledgeiengineering tech-
niques, and implement a usable system for knowledge acquisition and mainte- 0
nance. This document describes KREME's frame editor, macro editor, classifie ,

knowledge integrator. and rule editor. W.k

DD ' 1473 EDITION OF I NOV 66 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Whe, oes Ence,ed,

.1k

Report No. 6543

THE BBN KNOWLEDGE ACQUISITION PROJECT: PHASE 1 -
FINAL REPORT; FUNCTIONAL DESCRIPTION; TEST PLAN

Glenn Abrett and Mark H. Burstein

May 1987

Prepared by:

BBN Laboratories Incorporated .
10 Moulton Street
Cambridge, Massachusetts 02238

Prepared for: "

Defense Advanced Research Projects Agency -
1400 Wilson Boulevard
Arlington. Virginia 22209 j f

IL
*1.'

., ~

• •

Report No. 6543 BBN Laboratories Incorporated

Table of Contents
1. Introduction I
2. Overview of the BBN Knowledge Acquisition Project 3

3. The KREME Knowledge Representation Editing and Modeling Environment S

3.1 Functional Description 5
3.2 Basic Editing Environment 6
3.3 The Grapher 6

3.3.1 Panning the Graph 8
3.3.2 The Overview Graph 8
3.3.3 The Graph Operations Menu 8
3.3.4 The Graph Node Command Menu 9
3.3.5 Editing a Network from a Graph 10

3.4 Editing in the State Window 10
3.5 Editing in the Table Edit Window I I

3.5.1 Adding New Slots 12
3.5.2 Moding the Table Edit Window 12
3.5.3 Changing the Contents of the Table Windok 12

3.6 Files and Multiple Language Support 13

4. The KREME Frame Editor 15

4.1 The KREME Frame Language 15
4. 1.1 Frame Language Syntax 16

4.2 Using the Frame Editor 17
42.1 Editing m the Main Concept Editing Vie% 1V
4.2. Frame Editing Operations 17

5. Large.Scale Revisions of Knowledge Bases 19

5.1 The Macro and Structure Editor 19
5.2 Developing Macro Editing Procedures 21

5.2.1 Macro Example: Adding Pipes Between Components 21

6. Knowledge Integration and Consistency Maintenance 23

6.1 The Frame Classifier 24
, 6. 1.1 Completion 2-.

6.1.2 Classification 26

6.2 An Example of Reclassification 26
6.3 Using the Knowledge Integrator to Partitioi. and Merge Knowledge Bases 28

6.3.1 Load/Merge 28
6.4 Saving and Partitioning Knowledge Bases 29
6.5 Using Merge and Partition to Build Larger Knowledge Bases 29

:%

, ' , -

BBN Laboratories Incorporated Report No. 6543

7. Editing Behavioral Knowledge 33%

7.1 Editing Rules 33
7.2 The KREMIE Rule Editor 34
7.3 The Rule Editor View 35
7.4 Procedures in the KREME Environment 36

7.4.1 Procedural Abstraction and Structure Mapping 38

8. Knowledge Extension 41 e
9. Conclusion 43

10. Appendix A: Test Plan 45

Bibliography 47

W

0

0 16

Report No. 6543 BBN Laboratories Incorporated

List of Figures

Figure 3.1: KREME: Functional Description 5
Figure 3-2: The Main Concept Editing View 7
Figure 3-3: The Graph Operations Menu 9
Figure 5-1: The Macro Structure Editor View 20
Figure 5.2: Steps in PIPE Macro 22
Figure 6-1: Two Examples of Slot Completion 25
Figure 6-2: An Example of Reclassification 27
Figure 6-3: Example One : Merging with Nonoverlapping Attributes 30
Figure 6.4: Example Two: Overlapping but Compatible Properties 31
Figure 6-5: Example Three: Unmergeable Concepts 32
Figure 7.1: The KREME Rule Editor 37

%

A.

N

S_%-

A~ %

.J.
k" ,,,' '¢'. ,..;,,-.,,'. ,:.,.-..-..-..'.-,.-. %,-.. ... ' ...- ,-..-,.-, €-..- ,,, ., .,- ,,. -,.-%,r .- ,r,.-,....,-,, ',,.R¢,,." ,€,,a',.€o- ,-, *- .-.."

Report No. 6543 BBN Laboratories Incorporated

1. Introduction

This is the Final Report for Phase One of the BBN Laboratories Knowledge Acquisition Project. This research was

supported by the Defense Advanced Research Projects Agency of the Department of Defense and was monitored by

the Rome Air Development Center (RADC) under contract number F30602-85-C-0005.

Ie goal of this project was to create a useable and extensible knowledge engineering environment that will be

capable of handling very large knowledge bases, support experiments with knowledge engineering techniques and

implement a useable system for knowledge acquisition and maintenance. During Phase One of this project we have

created the KREME Knowledge Representation Editing and Modeling Environment. KREME is an extensible

experimental environment for developing and editing large knowledge bases in a variety of representation st\ les. It I

provides tools for effective viewing and browsing in each kind of representation. automatic consistency checking.

macro-editin- facilities to reduce the burdens of large scale knowledge base revision and some experimental ..

automatic generalization and acquisition facilities.

Among the planned extensions to KREME are:

e The Procedure Editor •

o A KEE Interface
aft

N The Addition of Boolean Cornectives to Slot Restrictions

o Extension of the Macro Editor ',

We are currently in the process of extending the value restriction language to permit more complex forms contaim n

conjunctions. disjunctions and negations. based on the restriction language for KEE"' frames [6]. Tbis effort

should result in an extended classifier, as well, capable of maintairung conststency among frames in the KEE class

of frame languages. 0

During Phase Two we wiU also be developing experimental kinds of automatic knowledge acquisition: techniques

for generating controlled acquisition dialogues, procedures to automatically transform previously acquired

knowledge for use in new tasks. and techruques for learning by analogy and from examples ..

KEE is a trademarK ot Lntei iir',, p

*%

-
,,..4.,, -,.

BBN I.aboratories Incorporated Report No. 6543 , ,

II

t 4

Au

S, rg
l

rg,

r.', ,."

-%--

'P

'-

Report No. 6543 BBN Laboratories Incorporated

2. Overview of the BBN Know ledge Acquisition Project

Our goal has been to develop an environment in which the problems of knowledge acquisition faced by every

knowledge engineer attempting to build a large expert system are minimized. We believe both knowledge engineers

and subject matter experts with some knowledge of basic knowledge representation techniques will find it easy to

use KREME to acquire, edit, and view from multiple perspectives knowledge bases that are several times larger

(i.e., 5-10,000 concepts) than those found in most current systems.
A.b

KREME attempts to deal with the inextricably related problems of knowledge representation and knowledge

U, acquisition in a unified manner by organizing multiple representation languages and multiple knowledge editors

inside of a coherent global environment. A key design goal for KREME was to build an environment in which
V
* existing knowledge representation languages, appropriate to diverse types of knowledge, could be integrated and

organized as components of a coherent global representation system. The current KREME Knowledge Editor can

be thought of as an extensible set of globally coherent operations that apply across a number of related knowledge

representation editors, each tailored to a specific type of knowledge. Our approach has been to integrate existing

Sframe and rule representation languages in an open ended architecture that allows the extension of each of these

languages. In addition. we have provided for the incorporation of additional representation languages to handle

additional types of knowledge.

Our approach to consistency maintenance has been to develop a knowledge integration subsystem that includes an

automatic frame classifier and facihties for inter-language consistency maintenance. The frame classifier

automatically maintains logical consistency among all of the frames or conceptual class definitions in a KREME

r frame base. In addition, it can discover implicit class relationships, since it will determine when one defimtion is

logically subsumed by another, even when the knowledge engineer has not explicitly stated that relationship. The

inter-language consistency maintenance facility checks for inconsistencies in references to frames in knowledge

-U. bases specified using other representation languages (e.g.. rules, procedures.

A second important area of investeation in developing the KREME editing environment has been the attempt to

4 provide facilities for large-scale revisions of a knowledge base. Our experience indicates that the development of an

expert system inevitably requires such systematic revisions of the developed representation. This is often caused by

'A the addition or redefinition of a task the system is to perform. These kinds of systematic changes to a knowledge

base generally require painstaking piecemeal revision of each affected element. one at a time. Our runtial approach

has been to pro ,ide a macro-editing facilit\. in \.hich the requi-red editing operations can be demonstrated h\

3 %U

C''. .:

BBN Laboratories Incorporated Report No. 6543

example and applied to specified sets of knowledge structures automatically. A library of genenc macro-editing

operations for the most common and conceptuallN simple (though potentially difficult to describe) operations wil be

developed during Phase Two of the project.

Finay, we have begun to investigate techniques for autornatic generalization of concepts defined in a knowledge "

base. We will briefly describe these experiments as well, in Section 8.

Underlying the entire KREME system is a strong notion of meta-level knowledge about knowledge representation

and knowledge acquisition. The representation languages were implemented based on a careful decomposition of "i

existing knowledge representation techruques and implemented as combinable objects using FLAVORS [71. By

organizing this meta-level knowledge base modularx. behavioral objects implementing such notions as inhentance

and subsumption could be "mixed in" to a variet% of representational subNN stem, making the incorporation of ne,-"

representations and their editors reasonablN straightforward. That is. each object in the meta-knowlede base

encodes some aspect of a traditional representational techruque. and is responsible for its own display. editing and
r

internal forms. ,,

•]~

4
.

I., -~~ ~ \

Report No. 6543 BBN Laboratories Incorporated

3. The KREME Knowledge Representation Editing and Modeling
Environment

A, 3.1 Functional Description
The KREME family of knowledge editors currently consists of three major editor modules: a frame editor, a rule

editor, and a procedure editor.2 (See figure 3-1 .) KREME also includes a large toolbox of editing techniques that

are shared among the editor modules. This section will describe the global environment and toolbox, later sections

will describe the individual editors. Sections 3.3 through 3.5 provide a discussion of the user interface. Readers who

reqire more detail should consult KREME:, A User's Introduction, BBN Report No. 6508.

Rule Representation Frame Representation
System System

KREME Editing /,
System

K' I User
*Environment

" *.,' Figure 3-1: KREME: Functional Description

,=%

" ~T'he Ptocedurt Editrt is mod= ed bricf3s in d, repon Fui' de~elopment of th Pioxedure S-..iior %&|itI occur in Ph ase T' o

. : . *. -- -t ?.:
a , .. . a- ?a *' % a.- ' ''".~ ' '

BBN Laboratories Incorporated Report No. 6543

3.2 Basic Editing Environment

Each type of representation included in the system has defined for it one or more editor i.ieK. A view is a

collection of windows appearing together on the screen. Each window displa s some aspect of the particular piece

of knowledge being edited and/or a set of editing operations on it. When the user desires to enter or edit a specific

piece of knowledge, the system opens the most appropnate vie%% for the type of knowledge and the editing operation

requested. Typically, any aspect of the knowledge being edited can be changed or viewed in more detail simply by 7

pointing at it. This organization allows knowledge to be viewed b. the user from multiple perspectives and at more

than one level of detail. ,,

The editor maintains a level of indirection bet%% een the knovk ledge beirq edited and the representation of that piece

of knowledge in the knowledge base. Th is ais ,plh .t. V e. hAni,n, Ik. that 01 te't editor buffer, Changes V

are always made to editor ditniriorn oh, .hih tr,- J-. rr 1 s - ht ,orm.pondin! objects in the actual

knowledge base. The stack or list of the actie defiruti, .hie_.,. A piblc to the user The top item in this

list is the definition current]\ being v ieed and edli I Th ,: t7 rr. I , n lit-, the ,urrent defirution in anr va\

without directly affecting the kno\,ledge ba-,c ()nl. h,.r th; m,.hitiiJ defnmin is to be placed into the %

knowledge base is a defining function appropnatie t,: the ip. . kn,'Ah.dc e e classification tor conepL, and

roles), executed and the knowledge base modified

Since the editor stack is always visible. it pro. ide one comenient method for bromk sing The user ma\ point at an% C

definition item currently in the stack The ohie,t v\ill then b displaed in the same editor ,iev. as wxhen it v\a., last

edited.

A number of window subsystems or tools have been developed and incorporated into the KREME editor to make

editing, viewing and brovsing in knowledge bases easier and laster The\ are descnbed belov.

3.3 The Grapher,-: :
KREME is equipped with a general graphing facdity that rapidl dravs lattices of nodes and Links. Its main use is to N
provide a dynamically updated display of a concept or role and its place in the specialization or inhentance ".*

hierarchy. When editing a concept in the Main Concept Editing VieN- or the Big Concept Graph Vie,. or when

editing a role, KREME automatica, displays all of that object's abstractions and specializations. More abstract .

objects are displayed to the left of the current editor object. and more specialized objects to the nght

As shosn in figure 3-2. the current editor object appears as a black node %ith \A hte letters. All other objects appear

as nodes with a white backgrourk Ob.ects that are defined as priniaz c are indicated by bold-edged boxes Nodes

that have been modified edited but not recla.ssified, havee grey background.

* ,, ." -" _- , *f" .. _-'C - - '' - . - , '.* .' .-. ' .- -'. *'. .
-- .

. - ' . .,', .' ' ,~s , . *' C,.,', ,.

Report No. 6543 BBN Laboratories Incorporated

Figure 3-2: The Main Concept Editing View%

A.

L ii
Irn~17

4 'a-

BBN Laboratories Incorporated Report No. 6543

3.3.1 Panning Ihe Graph

The grapher can display a graph much larger than the window through which it is viewed. To see a part of the

network that is off the screen, the user points with the mouse at some point on the graph window not containing a

node, holds the left button down and drags the mouse. To speed pan, the user holds down the middle mouse button.

3.3.2 The Overview Graph

Clicking the right button once over an empty pan of the graph window will make the Graph Operations Menu ,

appear. If the user clicks overview, a miniature version of the full lattice will appear in a black region in the upper

left comer of the graph window (as in figure 3-2). This overview shows a miniature version of the full network.

The visible region of the graph is indicated by a white rectangle. If the user pans with the mouse over the main

graph window, this white rectangle will follow the mouse movements. All of the mouse operations available on

nodes in the main window wiU also work on nodes in this window. The name of the node being pointed at is

indicated in the mouse documentation window. The overview window also can be used to pan the main graph

window. The overview is turned off by bringing up the Graph Operations Menu and clicking the command

overview. .-

3.3.3 The Graph Operations Menu

The other options in the Graph Operations menu shown in figure 3-3 are:

" hardcopy - Sends a copy of the full graph of the lattice to the printer.

* style menu - Allows the user to choose the font style and size of characters used for nodes on the graph.
Smaller fonts are useful to see more of large networks at once.

• find node - Prompts for the name of an object on the graph. and centers that node on the graph window
It also draws a circle around the node so that the user can find it more easily. The circle disappears as
soon as the graph is panned.

" overview - Switches the overviex graph between visible and invisible.

* orientation - Switches the orientation of the graph. Normally, the lattice is drawn from left to nght.

This command will cause the graph to be redrawn from the top of the screen down, and vice versa.

" speed pan - This command pops up the speed panning box without having to hold down the mouse
button. In this mode. chcking any mouse button will make it go away.

. redraw graph - Redraws the current graph.

8 ',

0 N.,

* a,

* ,,.

Report No. 6543 BBN Laboratories Incorporated

A

~rrpnCierations
hardcopy

font rnrenu
, find ncds

orientation
speed pan

St' Edra'.' ora, h

N! Figure 3-3: The Graph Operations Menu

3.3.4 The Graph Node Command Menu

Normally, the KREME Grapher displays only the abstractions and specializations of the current editor object.

because KREME was designed to work with the very large lattices characteristic of ver, large knowledee bases.

The Grapher provides a number of options to enable users to tailor the display to see more (or less) than KREME

normally displays on such graphs.

Whenever the mouse is over a node on a graph. the mouse documentation window shows the name of the node,

followed by:

L:Edit this node. M:Graph Relatives R:Menu of Editing Options

Clicking the left mouse button causes KREME to make the object pointed to the top editor stack item. This is an

extremely convenient way of browsing through large concept networks quickly. and focusing on different portions

of such a network. If. however, the user wishes to continue editing the concept that he is currently viewing, but see

£ more (or less) of the network around that concept or some other concept on the same graph, he can use the Graph

Relatives Menu found by clicking the middle mouse button over any graph node.

The Graph Relatives Menu. exposed by clicking the middle button over a node, contains the following commands:

* Graph Parents - causes all abstractions of the node clicked on to be added to the displayed graph

* Graph Children - causes all specializations of the node clicked on to be added to the displayed graph.

* Hide Children - causes all speciahzations of the node clicked on to be removed from the graph. unless
they are also children of some other node

9

BBN Laboratories Incorporated Report No. 6543

a Hide Node and Children - causes the node clicked on and its children to be removed from the graph.

3.3.5 Editing a Nethork from a Graph

Clicking the right button over a graph node causes yet another menu of options to be exposed, the Concept Graph

Edit Options Menu. 3

-U--

This menu contains the following options for concepts: -'

" Show Def'ition - This option causes the textual (USP) form of the concept's definition to be
displayed over the Graph Window. :.

" Kill Concept - This causes the concept pointed to to be removed from the knowledge base. It has the -

same effect as the Kill Concept command in the local command menu window, except that it works
when the user is not currently editing the concept he wishes to kill.

" Rename Concept - This command prompts for a new name for the concept pointed to, and immediately
replaces all references to that name with the new name throughout the knowledge base.

a Delete Parent - This command prompts for the name of a parent and then deletes that parent from the
list of defined parents of the concept irutially pointed to. It also switches KREME to editing the
concept modified, so that it can then be reclassified.

" Add Parent - This command also prompts for a parent. adds the concept named to the list of defined *.

parents of the concept. and switches to editing the modified concept. "%

" Splice Out Parent - This command prompts for a parent. and removes that parent from the list of
defined parents of the concept. replacing it with that concept's parents. Again. the editor is switched to ."

a view of the modified concept.

3.4 Editing in the State \\indo%%

The state window of the Main Concept Editing Vie% displays basic information about the concept currently being

edited. The top line displays the name of the concept. and any synon)rns or alternate names for that concept. The '-.

name of the concept can be changed by clicking on the word Concept: and entering a new nane.

The second line of the display shows whether the concept is defined as pnmitive or not, and whether the concept has

been classified or modified since classification. Clicking on the word Primitive: causes the concept to be marked r

primitive if it was not, and vice versa.

The third line displays the both the direct and defined parents of the concept. after the word Specializes: Detind ".

parents are concepts that the user specifies as abstractions of the concept. Direct parents are concepts that may or

may not have been defined as parents of the current one, but have been determined by the classifier to subsume the

class denoted by- this concept and not have anN speciah:ations tlit also suhsume this concept On the Concept

Graph, the direct parents of a concept are the ones with direct bnk. to it.

30n graphs of role%. the Role Graph .dit Options' Menu appears -ith esentialh the ,ame orrnan.s, for role%, except a% noted .. *
%

10

%. .

Report No. 6543 BBN Laboratories Incorporated

This Specializes: list should be read as follows: Concepts that are unmarked are both defined parents and direct

parents. Concepts that are defined parents but not direct parents are prefixed by a "-". Concepts that are direct

parents but not defined parents are prefixed by a "+". The user can easil) add a parent to the set of defined parents

of the concept.

3.5 Editing in the Table Edit Window

Normally. the table edit window in Main Concept View displays the set of Local Slots of the concept. that is.

those slots which are defined locally by this concept and not inherited from above. The columns in the table are

labeled "Defined by", "Role", "Number Restriction", "Value Restriction", "Default", and "Description".

Clicking (with the left mouse button) on the command All Slots in the table edit command window% causes

KREME to display both local and inherited slots. In this display. local slots are indicated by the word *LOCAL* in

4 the "Defined by" column of the table. Slots inherited from a parent show the name of that parent. Slots formed by

combining the value restnctions and/or number restrictions of several parents are indicated b) the word
'.

CLASSIFIER. When the table window is displaying all of the concept's slots, the user can return to viewing just

the local ones by clicking the command Local Slots.

Whenever the Table Edit Window shows slots of the current concept. the user can edit those slots or add new ones.

To change the slot name. value restriction, number restriction, default, or descnption of a slot, the user simply clicks

the left mouse button over the thing to be changed, and will be prompted for a replacement. For all but number

qrestrictions, the right button will pop up a menu that includes the commands: Change the part of the slot pointed to.

Show Definition of the concept or role pointed to. Edit Definition of that concept or role, or pop up a Graph of its

abstractions and specializauons. When pointing to the slot name. in the column labeled "Role". the user can also

Rename Role. that is. change the name of the role. and all references to it in the knowledge base.

-. When the mouse is over a line in the slot table, and the entire line is encircled by a box. the right mouse button can

be used to get a menu of Delete Slot. Copy Slot to another concept, and Move Slot to another concept. For the last

two, KREME prompts for the name for the concept to move or copy the slot to.

e_ A"*

'p

/8 5',.

BBN Laboratories Incorporated Report No. 6543
I

3.5.1 Adding New Slots

Whenever the slots table window is visible, as in the Main Concept Editing View, the user can add new local slot

definitions. A new slot is added to the defined slots of the concept with the Add Slot command. When this

command is issued, the system prompts for a role name. a value restriction, a number restriction and a default form.

Any of these items can be entered by typing or by pointing to the desired name or form if it is visible.

If a role or concept named in a role restriction or default does not exist, the system will offer to make one with the -.

name given, and proceed to pop up the defining form for that object. When the user is finished filling out the form.

be clicks Derne, and KREME will continue to ask for the rest of the new slot's features.

When the user has finished adding and modifying the slots of a concept, he should always make the changes

permanent with the Classify Concept command.

3.5.2 Modif% ing the Table Edit INindo%%

The appearance of Table Edit Windows can be modified in several ways. The tables are scrollable in both the

up-down and left-right directions.lf the user does not wish to see some columns of the table, the) can be selectielk ,, '

removed.

3.5.3 Changing the Contents of the Table WNindo% -

Since there is not enough room in the Main Concept Editing View to display all of a concepts defining features at - .

one time. the contents of the Table Edit Windo-w can be changed to display those other features To do this. the user

must use the mouse to find the table window contents menu. This menu is available wherever there is nothine eke

under the mouse while still inside the table window. the user will knoA he has found it because the mouse ,

documentation windo% will show the words:

R: Change the contents of this table.
S

When the user clicks the right button. he will see the following menu options:

" Slots - Displays the table of this concept's slots, as described above.

" Inverse Restrictions - Displays a table, essentially like the slots table, but of all of the slots displayed - '

are slots of other concepts that use the current concept as their value restriction. This table is useful
when tracing references to a concept in other concepts. When ttus table is displayed. the table edit
command window will be empty. Some of the editing options described for the slots table will not
work here. *

. Slot Equivalences - This table displays the slot equivalences of the current editor concept This table
has only three columns. "Defined by", "Path 1" and "Path 2". The two paths are designated as .
denoting the same object. Since slot equivalences can be mhented. their source is also indicated in the
table, in the column "Defined bi". When tus table is visible, the table edit command windov% will
show the commands Local Equivalences. All Equivalences. and Add Equivalence The first two just
change which equivalences are displa\ed The last prompts for two slot paths that should be made
equivalent.

12 ',

%

Report No. 6543 BBN Laboratories Incorporated

Disjoint Concepts - This table is just a one column list of all of the concepts that are defined to be
disjoint from the one currently being edited. When this table is visible, the Table Edit Command
Window will display the commands Add Disjoint Class. Local Disjoint Classes. and All Disjoint 0
Classes. WV

Jft

3.6 Files and Multiple Language Support .J]

All definitions manipulated by the editor are read and stored in lisp-readable text files of defining forms. Since

these files contain formatted lisp forms. they are user-readable, and can be edited offline using an ordinary text

editor. In fact, KREME can as easily read files that were developed independently using a text editor or some other

frame editor.

Files are read in using the LOAD command. A file can be loaded into a blank KREME knowledge base or can be

loaded on top of an already existing knoxledge base. This mechanism, which relies hea'di on the the frame

classifier to maintain consistency, enables KRENI-E to organize information from multiple knowledge bases to create

a single unified whole. V

KREME currently reads and writes definitions in either its own frame language syntax or NIKL syntax. This

flexibility has made it possible for KREME to be used regularly to examine and update a knowledge base of

approximatel) 1000 roles and concepts for the TRUS'JANsUS natural language interface that was built using NIKL.

KREME can also read files of MSG (the frame language of the STEAIER [21] system) defining fcrns. providing

access to the extensive STEA.MER knoledge base of concepts and procedures. We are currently budding an

interface to files of KEE frame definitions.

This multiple language handling t'aciht\ is a cru,iaal feature of KREME. A library of input translation programs viU

enable a knowledge base builder using KRESE to draw upon previousl% existing knovledge bases to create neA C-

knowledge bases.
go

"C.

A%

1 3 .

.d%-
lk " ' ' ' '.,; , .-,'; ,¢ , .,' : ¢ : w - - - : ' % "-,' ,_'.-,_-..-. -. _-. . .- -..-. "'

.- ,, _- .,- ,,- -;. , . | .. - . . -_ . -°r, , ,. - - < . .. - ,

BBN Laboratories Incorporated Report No. 6543 "":

a,

• L

g'a

4.
4,

a'- 0

Ja'

4,,?

p

.4
A. a

Report No. 6543 BBN Laboratories Incorporated

4. The KREME Frame Editor

A This section will describe the KREME knowledge editor for a frame representabon language.

4.1 The KREME Frame Language
A number of frame languages have been developed in recent years to support Al systems [11. 2, 17. 9. 3. 6. 8].

These languages have been well researched and extensively tested, and our most important criteria for a suitable

frame representation language were that it:

I Allowed multiple inheritance
X 2. Was a logically worked out mature language.

3. Had some mechanism for internal consistency checking.
4. Was built on a modular object oriented base so that the language could be decomposed in such a %kav as to

make it easily extensible.

NIKL (the definitional or frame language component of KL-TWO) [9. 14, 201 seemed an ideal candidate. It is a

P, full) worked out frame representation language that allows multiple inheritance. is reasonabl, expressive and.

perhaps most importantly, was designed to work effectively with an automatic classification algonthm that could be

easily adapted to provide a powerful mechanism for consistenc checking and enforcement during knowledge base

development. However, no object-onented implementation of NIKL existed. and the NIKL classifier was not

designed to allow modification and reclassqcaion of previously defined concepts. A second frame language. ..

known as MSG. had been built as part of BBN's STEAMER project and is object oriented in both of the abo'e ..

senses.

To develop KR.EME. we elected to reimplernent NIKL as an object oriented language using MSG as a gwde The

NIKL data structures were decomposed into a modular hierarchy of flavor definitions, and the KREME frame

language was then built out of these flavors. Ths enabled us to incorporate the sophisticated instantiation "S
mechanism of MSG with minimal effort. In the process. we %,ere also able to implement a modular version of theJ~
NIKL classifier algonthm, This provided the kind of reclassification capabihty required for a knowledge editing

environment and anticipated the extension of the classifier to deal with the richer semantics of languages like

Intellicorp's KEE (6].

%

-.. ..-. '.

A- •
% 'AS

BBN Laboratories Incorporated Report No. 6543 ":- -

4.1.1 Frame Language S%,nta\

The remainder of this section will briefly describe the basic definitional syntax of the KREME Frame language. As I

this syntax closely resembles the formal syntax of NIXL interested readers are referred to [9) for more detail.

Following NIKL, a KREME frame is called a concept. Collections of concepts are organized into a rooted
L

inheritance or subsumption lattice sometimes referred to as a taxonomy of concepts. A single distinguished concept.

usually called THING, serves as the root or most general concept of the lattice. A concept has a name, a textual " .

description, a primitiveness flag, a list of concepts that it speciali:es or is subsumed by, a list of slots, a list of slot

equivalences, and a list of concepts that it is disjoint from

The lists of slots, slot equivalences and disjoint concepts are collectively referred to as the features of a concept. If

each concept can be thought of as defining a unique category, then features of the concept define the necessay

conditions for inclusion in that category. If a concept is not marked as primitive, the features also constitute the '. *

complete set of sufficient conditions for inclusion in that category . A concept inherits all features from those

concepts above it in the lattice (those concepts that subsume it. and. thus. are more general) and may define

additional features that sex-'e to distinguish it from its parent or parents.

Slots (sometimes called role restnctons) consist of a role or slot name. a value restriction, a number restncuon and

an (optional) default form. The value restriction specifies the class of concepts allowed as values for that slot. As in

NIKL. value restrictions usuallh specif% a particular concept. " .

Slot Equnalences descnbe slots i and slots of slots) that bN definiion must always refer to the same entities

The role name specified for each KREMIE slot refers to an object called a role Roles in KREME, as in NIKL and

several other frame languages like KRYPTON [3], and KnowledgeCraft [8]. are actually distinct, first class objects

that form their own distinct taxonomy, rooted at the most general possible role. usually called RELATION. Roles.

describe two place relations between concepts. A ro!e restriction at a concept is thus a specification of the wXa\s a

given role can be used to relate that concept to other concepts. -

L

'Concepts marked as primtie sometitmes reterred to a' ,%aturai KAnai, hate no complete set of sufficient conditions For et anpic an
ELEPHAN-" must. b. necessitN. be a MAMAkL. but . tihout an exhaustie list of the attributes that distinguish it from other mammals. it must p
be represented as a primitise conept The 5 lass of t4I7 ELE.P-A\-,. on the other hand, might he 5 ompletel described a, a ELEP-\-,
with slot COLOR restric ted t , \'HIL.,

16 V". p

S . * * - ~ .--

Report No. 6543 BBN Laboratories Incorporated

4.2 Using the Frame Editor

The KREME frame editor has five views, the Main Concept Editing View, the Alternate Concept Editing View.

the Big Graph View. and the Macro Structure Editor View. Roles, which are also part of the KREME Frame

language, are edited with the Role Editing View. In this section, we will cover the details of the editing operations

available in the first three of these views.

A.

4.2.1 Editing in the %lain Concept Editing \ievy

Normally, when one creates a new concept or edits a concept for the first time. KREME makes that concept the top

concept on the Editor Stack, and switches to display the Main Concept Editing View. There, KREME displays the

concept as it exists at that time.

Figure 3-2 shows ho the graph windom immediately displays all of the abstractions and speciahzations of the

concept being edited. the state windovi shows its name, whether it is pnmitive or not, its edit state (classified or not.

modified or not). its parents. and a textual description. The table window simultaneously displays all of the

concept's locally defined slots.

4.2.2 Frame Editing Operations

Space does not permit a full descnption of the functionalitx of the KREME frame editor so we \l ver, briefly

* "* touch upon a few of its more important operations

Making ne,% concepts. The %\e,% Con, p command in the elobal command menu initiates the defirution of a ne',

concept that is 1) fully specified by the user. (21 simiar to some already defined concept. or (3) a specialization of

one or se, eral other defined concepts. When the initial form for the new concept has been specified the system

,2% creates a ne\% concept definition for it and show s this new defirution in the main concept view. The user is then free

to add details (slots. equivalences, additional parents. etc (to the nexi concept definution. classify it. or edit other

'U concepts.

-* "- Adding and modifying slots. Whenever the window' displaying slots is visible, slots can be added or modified A

new slot is added to the defined slots of the concept with the Add Slot command. Any portion of a slots definition

-ecan be entered by typing or by pointing to a visible reference to the desired item When a role or concept name that

is not defined is specified. the system offers to make one with the name given.

Users may modijf an\ locall\ defined slot or inhented slot Slots shovAn in table windows are modified b. pointing

at the appropriate subform and then either typing in or pointing to a replacement form. Modifying an inhented slot

causes the neu definmton to be local]\ defined

17

i .% •-"°

uV 1 v-

BBN Laboratories Incorporated Report No. 6543 '/ /

Adding and Deleting parents. The system displays the classifier determined parents of a concept in two places.

The concept graph displays them as part of the abstraction hierarchy of the concept. and the state pane indicates both

the defined and direct or computed parents of the concept after the word "Specializes:". Since the classifier may

have found that the concept being edited specializes some concepts more specific than those given as its defined

parents, defined parents that are not direct parents are preceded by a "-", while classifier determined parents that

were not defined parents are preceded by a

Adding new defined parents to a concept's definition is done by clicking on the word "Specializes: in the state

window and typing a concept name or poinnng to any visible concept. Parents can be deleted by clicking on their

names in the list of parents displayed in the state window.

Changing names and killing concepts and roles. KREME allows the user to change the names of concepus and •

roles or to delete them completely. Name changing is accomplished simply by pointing at the concept or role's

name in the state window and enterng a new name. The Kill command splices a concept out of the taxonomy by

connecting all of its children to all of its parents.

18 %

%.

s I

d.p°

IS 'i"S

i ll

18

, .

.) - - '. -- , 7 *. - - - - - 17

Report No. 6543 BBN Laboratories Incorporated

5. Large-Scale Re isions of Know ledge Bases

. As knowledge bases grow larger. and the sets of tasks that intelligent systems are called upon to perform expands.

system developers will need automatic methods for revising and reformulating accumulated knowledge bases.

Toward this end. we feel that it is important to find ways of expressing reformulations of sets of frames and other ..

representations and to begin developing facilities supporting the generation of new representations from old ones-

r,. -. N.'

We are taking two different approaches to these problems. First, we have developed a macro facility for , -

reformulations that can be expressed as sequences of standard, low-level editing operations This facilitv allows %

users to use an example to define eding macros that can be applied to sets of frame definitions. Second. we ae

building a hbrar of functions providing standard editing operations that cannot be defined simply as sequences of %

low level editing operations. Our main purpose in this project is to collect and categorize a number of different •

kinds of knowledge base reformulations. Our hope is that a large fraction of these operations can be con~emently

descnbed using the macro facilir. as it is more accessible to an expenmental user communrti than an% set of

prepackaged" utilities, and can be more responsive to the. as yet. largelh unknown special needs of that commurut. ".

5.1 The Macro and Structure Editor

One of the vie'As available \,hen editing concepts in KREME is the macra and structure edtr. This .iev, iSee

figure 5-1.) provides display and editing faciliues for concept definitions, based loosely on the kind ot structure

editor provided in man\ LISP envirornments The viev. provides two widows for the dspla% of stylized defing

forms for concept,. The urrcn: td~ 1t nd, displays the definition of the currently edited concept (the top item on

the editor stack) The displa vm ind o is available for the display of an\ number of other concepts An\ concept

which is visible in either wmtndo\4 can be edited, and features can be copied front one concept to another b\ pointing

Both windows are scrollable to viev, additional defuutiors as required.

There is a menu of commands for displaying and editing definitions that includes the commands Add Structure,

Change Structure, Delete Structure. Display Concept and Clear Displa., Arguments (if any) to these

commands may be descnbed bv pointing or typing. Thus. to delete a slot, one simply clicks on Delete Structure .5

and the display of the slot to be deleted. Adding a structure is done by clicking on Add Structure. the keyword of

the feature class of the concept one % ishes to add to (e.g.. Slot:). The new slot itself may be copied from a display ed -

concept by pointing, or a neA one may be entered from the ke\board Changing (that is. replacmgi a structure can

be done by pointiny in succession at the Change Structure commnd. the item to be replaced. and the thing to

19

% %. %', .

BBN Laboratories Incorporated Report No. 6543
iK,

4.,t .:YS(U-cle.,Ifie~; ftdfedl
1

''~

to" IL

• o . ,A

r V.I(l E . ' ... I , ELLO,)L I p, I, TI 'CDLOPO.E ti.cl 10 ELL:tLAI ;C.1i,.l3l- tl IDOJIPIJI E wc I I AIMIE

4 tII - 1 'P 1 MR~. It, - 'le-tv .
I C t E,.. A r CW ; . C CIL~ n l*. Clagsses;5

a a

un e Scro
-.

rIeplc tw nms ae.Cag tutr a lob eoe stnp. bpitin at th-strctur to be .,

plae btt~ee em e., eoted de I. PIMto"

mte a no cooerl mhsc st:,sIrc t re -v b pr"otvid ath m tnbees ,

rdplay i oith. In oti asn. Ch an Structure a n a be insibe cocpt by plat the strutn o b

replac.ithou th mnucomad

concept in the dspla w do.. Clear Displa. removes al items from the displaS wucdor. IEtdivdual concepts can

be deleted from the dspa,, mdo b. pomtmn at them and clicilung£ The Edit Concept command is used to

change what is displayed in the current edit windoA. Editing a new concept moves the old edit concept to the

bottom of the displa, windo,

.-

-S

20 Pk

-M 1--:.

Report No. 6543 BBN Laboratories Incorporated

"- 1

5.2 Developing Macro Editing Procedures 0-';e.

These operations, together with the globally available commands for defining new concepts and making 0

specializations of old concepts essentially by copying their definitions, provide an extremely flexible environment in

which to define and specify modifications of concepts with respect to other defined concepts. Virtuall, all

knowledge editing operations can be done by a sequence of pointing steps using the current edit window and the
.•

display window. This style of editing is also used in the rule editor. The combination of editing features and

mouse-based editor interaction style provides an extremely versatile environment for the description, by example, of

a large class of editing macros.

0
In order to have macros, defined essentially by example. work on concepts other than those for which the-, were

defined, the operations recorded cannot refer directly to the concepts or objects which were being edited when the

macro was defined. This is handled by a kind of implicit variablization, where the objects named or pointed to are

replaced by references to their relationship to the initially edited object. In most cases. these indirect references can

be thought of as references to the location of the object in the structure editor's display windows. In fact. each new

object that is displayed or edited in the course of defirng a macro is placed on a stack called the macro itenis list. %

together with a pointer to the command that caused the item to be displayed. The utility of tus form of reference

will become clearer with an example.

5.2.1 Macro Example: Adding Pipes Bet%%een Components

When the STEAMIER [21] system "as developed, a structural model of a steam plant was created to represent each

component in the steam plant as a frame, with links to all functionally related components (e.g.. inputs and outputs

represented as slots pointing at those other objects. So. for example, a tank holding water to be fed into a boiler tank

through some pipe that Aas gated b. a valve was represented as a frame with an OUTPUT slot w-hose value Aas a

VALVE. The OLTPUT of that VALVE was a BOILER-TANK. The pipes through which the water was conveyed

were not represented since they had no functional value in the simulation model. If it had become important to

model the pipes. e.g because the\ introduced friction or were susceptible to leaks or explosions, then the %

representational model that STEAMER relied on would have required massive revision Each component object in

the system would have needed editing to replace the objects in its INPUT and OUTPUT slots with new frames

representing pipes that were in turn connected by their OUTPL"T slots to the next component in the system.

One of our goals in developing the KREME macro editor was to be able to make such changes easily. Wule the\

are simple to descnbe. the\ normally require many tedious editing operations to a large number of concepts. Figure 0

5-2 shows a macro that can be applied to all objects in a system with INrP'I" and OUTPUT slots, in order to

21

-. ~~~ Ti I-1.*.-

BBN Laboratories Incorporated Report No. 6543 s i

I M ' J d :, 14 New liolf" I'd am'-l, Gent. al. I.n

Concept Concep

Prntv:YS(Unclassified; Modified) ~
Spectiavs: PIPE
Descripti4on:F

[; . K. , .I0! ! .- : 11111

All Pcole Pe1'-1..'' -Fe.. FI t i'~.*Pt e!t'-CtC'. : cI~*lis I ? I- b I.)W

0- 1141.11 E :4- 1' tF, C lO CIF E * 9. , Il 'E -
M R--. E 3:al 1 ..M m : E 3-

C C L(P- rF E I:O. 1 CI. :.,,e
• "

:,'

Clc Define Mac o . Display Maro te 0a TANK1) 0. a)•

(OUTPUT the TANK1 :l VAtE!-,¢

While Editing TANK 1:
Click on Define Macro. (Makes Macro Item 0 =TA'V).

1. Make a new concept which specializes PIPE. (Creates PJPEO as item 1).
2. Change the INPUT value restcnon of item I (PIPEO) to item 0 (TANKI).
3. Change the OUT1PUT value restriction of item I (PIPEO) to the OUTPUT value restriction of item 0

(OUTPUT of TANVKJ = VALVE]).
4. Classif, Ore current edit concept (Defines PIPEO).
5. Change the OUTPUT value restriction of item 0 (= VALV'E]) to item I (PIPEO).
6. Classify. item 0 (TANK],P.
7. Edit the OUTPUT value restriction of item I (Creates item 2 = VALVE]).
8. Change the INPUT value restriction of item 2 (1.*INPL of/IALVEJ TANK]) to item I (PIPEO).
9. Classify all items.

Figure 5-2: Steps in PIPE Macro , A.

generate and rnsert PIPEs into those slots The macro also sets the OUTPUs of those PIPEs to be the concept that "N

was the old value of the OUTPLT slot in the concept edited, and similarly redoes all INPLU7s-

Figure 5-2 shows bow the macro is defined, by editng a representation of a tank (TANKI) connected (by role

OLYTPUT) to a valve (VALVE2). The sequence of steps requred. defined only using the mouse, is shown in figure

5-2. as they would appear in the Macro Definition window of the editor.

In Phase One, work on macro editing was only just begun. However, this technique already shows promise as a :-., .'

method for accomplishing restructurings of knowledge. We see our investigation of macro editing as on]\ the first

step in developing a knowledge reformulation faciliry that will make use of the higher level structure of the

represented knowledge

22

%-.

I

Report No. 6543 BBN Laboratories Incorporated 1

6. Knowledge Integration and Consistency Maintenance

One of the most time consuming tasks in bwlding large knowledge bases is maintaining internal consistency.

Modification, addition or deletion of knowledge in one part of a knowledge base can have wide ranging

consequences to both the meaning and structure of the knowledge stored in other parts of the knowledge base. A

central component of the KREME system design was that it incorporate tools for consistency maintenance both

within and across representation languages. These tools are collectively referrcd to as the knowledge integrator.

'S When new knowledge is entered or existing knowledge modified it is the task of the knowledge integrator to

propagate, throughout the knowledge base. the changes that this new or modified knowledge entails, and to report]

any inconsistencies that have been caused by the change. 5%S

In essence, the knowledge integrator takes each new or changed chunk of knowledge (e.g.. a frame, role, rule or

procedure) and determines. first, how the new definition fits into the knowledge base and. second. which other]

definitions depend on the current one for their meaning within the knowledge base. These dependencies are placed .1m

on an agenda which, in turn. causes them to go through essentially the same process.

The knowledge integration subsystem for frames is basicallx an extension of the classification algonthm developed

for the NIKL representation language. The NIKL classifier correctly inserts ne frames into their proper spot in a

taxonomy. by finding the most specific set of concepts whose defirutions subsumed the definition of the ne-'

concept. The KREME classifier was designed to adchtionaly allow existing concepts and roles to be modified and

and then reclassified, so that the effects of redeftmtiors are automatically propagated throughout the entire frame j %

network. This was accomplished b redesigning the oniginal NIKL classifier to take advantage of the meta-lesel be%

descnptions of KREMIE Frames and implementing the neA classifier using the dependency directed agenda

mechanism of the overall knowledge integrator. S

..,.,

q%

S....

%'

-'e
.-.

BBN Laboratories Incorporated Report No. 6543 -! -

6.1 The Frame Classifier

The remainder of this section wiU give a bnef description of the frame classification pan of the knowledge p

integrator, which is the most completely developed portion of the system. For a formal description of the NIKL

classifier algorithm see [14, 15]. For a more complete description of a somewhat simpler classifier for an editing ,

environment, see [1].

The frame classifier works in essentially two stages, starting from a concept or role definition, as supplied by the -" -

editor or read from a file. The first stage, called completion, refers to the basic inheritance mechanism used by ...

KREME Frames to install all inherited features of a concept or role in its internal description. The completion

algorithm, when given a set of defined parents and a set of defined features for an object determines the flil.

logically entailed set of features of that object. The second stage is the actual classification or reclassification of a

role or concept. That is. the determination of the complete, most specific set of parents of the.object in its respective

subsumption hierarchy.

6.1.1 Completion r. %

The completion algorithm is broken up into modular chunks that correspond to the decomposition of the frame

language. There is a distinct component that deals with slot inheritance, another component that deals with disjoint

class inheritance, a third that deals with slot equivalence inheritance and so on. This organization makes it quite

straightforward to extend the language with new features that handle inheritance in different ways.

Figure 6-1 shows some of the complexities of slot inheritance. In 6-lA. the most specific value restriction for the

slot LIMBS at 4-LIMBED-ANIMLAL is inhented from one parent (ANIMAL) while the most specific nwnber 1 - -- -

restriction. EXACTLY 4. is inhented from 4-LDMBED-TI-UNG. The completion algonthm determines that the

restriction for the role LIMBS at the concept -- LIMBED-ANIMAL must be EXACTLY 4 LIMBS.

Figure 6-1B shows one case for which the effective value restriction must logically be the conjunction of several " -.- *'*

concepts. Since ANIMAL-WITH-LEGS is both an ANIMAL, and a THING-WITH-LEGS, all of its LIMBS must

be both ORGANIC-LIMBs and LEGs. If the concept ORGANIC-LEG, specializing both ORGA.NIC-LIMB and

LEG, exists when ANIMAL-WITH-LEGS is being classified, the integrator will find it and make it the value

restriction of the slot LEGS at ANIIMAL-WITH-LEGS. If it does not exist. the integrator stops and asks if the user -

would like to define it (that is. define a concept that is both an ORGANIC-LIMB and a LEG).

24

virXTI'V X "Z 7- 7.1 , 17'-

Report No. 6543 BBN Laboratories Incorporated
IVI,

Figure 6-1: Two Examples of Slot Completion
V

"0

4 limbed limbs

animal limbexactly
4

Inhertingdiffeent umberand alue rtrics

li b..

animal

~exactly 4

Inheriting different number and value restrictions. A',

limb :.

~~organic "

an m llimbsli b,--,,

) ~ ~~leg.-'--

thing
with legsles/

anma organic .,

Conjoined Value Restrictions.-,""

--%
25

BBN Laboratories Incorporated Report No. 6543
p

6.1.2 Classification

The second stage of the frame classification algorithm finds all of the most specific subsumers of the concept being

defined of redefined. This is the actual classification stage, and is essentially a special-purpose tree walking

algorithm, d
The basic classifier algorithm takes a completed definition (that is, a definition plus all its effective, inherited

features) and determines that definition's single appropriate spot in the lattice of previously classified definition,;

The result of a classification is a unuque set of the most specific objects that subsume the definition and a unique set

of the most general objects that are subsumed by the definition. When the classified definition is installed in the
I

lattice all the concepts that subsume its features will be above it in the lattice and all the concepts that are subsumed,

by its features will be below it.

The classifier is built around a modularl constructed subsumption test that compares the completed sets of features

of two objects. The object being classified is repeated, compared to other, potentially related. objects in the lattice •

to see whether its completed defirution subsumes or is subsumed by those other objects For one definition to

subsume the other, its full set of features must be a subset of the features of the other. As with completion. 4
subsumption testing is partitioned by feature type (i.e slot. disjoint-class etc). One object subsumes the other when

all of its individual feature-type subsumption checks return EQUIVALENT or SUBSUMES, and there is at least one

vote for SUBSUMES. The advantage of this kind of modular orgaruzation is extensibilit. If a ne% feature type is

added to the language one need only define a subsumption predicate for that feature. and objects haine that feature-

will be appropriately classified.

6.2 An Example of Reclassification , v
The power of frame reclassification in an editme environment can be illustrated ith the folio%,ng relati% el% simple '

example. Suppose a knowledge base developer had defined both GASOLINE-POWERED-CAR and INTERNAL-

COMBUSTION-POWERED-CAR as specializations of CAR. but had inadvertentl. defined I.NTIERNAL-

COMBUSTION-ENGINE as a kind of GASOLINE-ENGIN'E. In this situation, the classifier would deduce that .,* *%.

INTERNAL-COMBUSTION-POWERED-CAR must be a specialization of GASOLINE-POWERED-CAR. as

shown in figure 6-2A. since the former restmcted the role ENGINE to a subclass of the later's restnction of the

same role. "'

Redefirung IN'TERNAL-COMBUSTION-ENGINE as a kind of ENGINE (rather than a GASOLINE-ENGINE . and
I

then reclassit'ing, causes all of LNTERNAL-COIBL'STION-ENGINEs dependents to also be reclassified.

.

26!

F7 Mi MW 4 7777- F. w. * * - -- 4.-

Report No. 6543 BBN Laboratories incorporated

Figure 6-2: An Example of Reclassification

machine

car egine ngin

parent powered engine gasoline

'5'A. Before Reclassification

mac5,..

car engie engi-

5,.5

inter al in erna
5combustio

comusio ON .,

powerd caengin

..

27S

BBN Laboratories Incorporated Report No. 6543 1

including INTERNAL-COMBUSTION-POWERED-CAR Since GASOLINE-ENGINE no longer subsumes

INTERNAL-COMBUSTION-ENGINE. the restrictions for GASOLINE-POWERED-CAR no longer subsume those

of INTERNAL-COMBUSTION-POWERED-CAR, and the classifier therefore finds that GASOLINE-POWERED-

CAR does not subsume INTERNAL-COMBUSTION-POWERED-CAR. This is shovn in figure 6-2B. .,'

The combination of inconsistency detection during the completion phase and the automatic propagation of

classification changes that occurs during reclassification makes KREME a powerful and extremely useful tool for

knowledge base development and refinement. Since the effects of reclassification are immediately made apparent to

users via the dynamically updated graph of the subsumption lattice, they sometimes find that the definitions they

have provided have some unanticipated logically entailed effects on their taxonomy. Sometimes these effects are -

surprising, although correct. Other times, they lead to changes and additions which make the knowledge base more

complete and correct.

6.3 Using the Knowledge Integrator to Partition and Merge Kno ledge Bases

6.3.1 Load Merge

Perhaps the single most important use for the Knowledge Integrator is to enable orderly merging of independentl,

developed knowledge bases. The process of loading one knowledge base into another is made somewhat involved

by the need to merge and"or split and rename concepts that have the same name in both networks.

There are a number of complex cases to deal %kith. The simplest case occurs when tsxo definitions of the same

concept have different but complementar- attributes. The KREME merge logic stmpl\ forms the union of the

attributes of both concepts and edits all pointers to either concept so that they point to the new. enrinched concept

(See Figure 6-3.)

Id

A somewhat more complex case occurs when slots shared by both concepts are given different restrictions. (See

Figure 6-4.) The system chooses the most specific restriction for the slot.

If concepts with the same name have properties that make it impossible to merge them -- that is. the identical names

really stand for different concepts in the two knowledge bases (6-5), then the system will inform the user of this fact

and ask the user for a new name for one concept.

The user has some control over this entire process and can set switches which cause the system to alv as, quer.

when it finds two concepts vith the same name. alua~s merge concepts if it can. or never merge concepts. keeping

the knowledge bases distin,t

28

-w -........... C ' M~ J .p1 ~ ~ 4 t9

C Report No. 6543 BBN Laboratories Incorporated

A
-

6.4 Saving and Partitioning Kno-, ledge Bases

Any time during the development of a knowledge base, the user can save the entire developing knowledge base to a

disk file. This is a useful feature when developing small knowledge bases or working on a piece of a knowledge
Ne

base that will later be merged into a larger whole.

q Another useful facility is KREME's ability to partition a knowledge base along user-designated lines and save the S

partitions in distinct files. This is accomplished by allowing the user to designate a set of seed concepts. KREME

will then create and save a partition of the entire knowledge base, based on the seeds. In an oversimplifed sense, the . %.

partition consists of the seeds, all specializations of the seeds, and all the concepts that the seeds either directly or

indirectly depend on. This facility can be used to break up a single knowledge base into several overlapping

subcomponents.

6.5 Using Merge and Partition to Build Larger Knowledge Bases

Taken together. the merge and partition facilities suggest an approach that we think will prove to be an extremel"
.dK -

powerful paradigm in the budding of very large. very complex knowledge bases. When a knowledge base grows to a

size at which it becomes difficult to deal with in its entirety. the partition/save facility can be used to divide it into ,e%

several overlapping logical subcomponents. each of which is a full scale. consistent knowledge base in its o n right.

These multiple. smaller knowledge bases can be worked on independently of each other with full confidence that the

loader/merger can put the independently built subcomponents together in an orderly. consistent fashion.

In Figure 6-5. there are two networks. The "ball" in Network I stands for a concept that is a kind of round object. In

Network 2. the name "ball" stands for a kind of formal dance. These are differenct concepts with unmergeable I

properties. In both networks. Eient and Object would be defined to be disjoint. In tfus case. the Merger would ask

the user for a new name for one of the concepts and would keep them distinct. 0

,P

J.,

9.,
[" ., '_"Z..''. "* ." , .'* " t; .- ¢',.+'..,'r" " .. "% ".

. ' "29".7 ._"

FXC -O PW&N SrWTJNF'1 .1:~- "R- W.. -,,Z 717. 7K T

33N Laboratories Incorporated Report No. 6543 5'*5

Figure 6.3: Example One Merging with Nonoverlapping Attributes

Machine

Car Egine ngin

MachinePropert

Machine Enginet

Engine Colo

Car.

Color%

30'

.

Repor No.6543BBN Laboratories Incorporated

Figure 6-4: Example Two Overlapping but Compatible Propertes

.%WI

Machine

0

Machine Egn

Car EgineRuto ngin

31-

3BN Laboratories Incorporated Report No. 6543 -

Figure 6-5: Example Three: Unmergeable Concepts

"'5

Network 1 Object Property

Shape-
Round

'5

Event

Network 2

Dance Fo _rm al _

,'.

Ball

32

Report No. 6543 BBN Laboratories Incorporated

.-
"*',

7. Editing Behavioral Know ledge

KREME embodies a set of mechanisms for representing and editing behavioral kno*ledge One mehansm

involves associating behaviors with frames. Since frames can also be associated A ith fl., ,r. beha iors ha.e been

implemented so that they can be compiled into flavor methods.

A click of a mouse button and the tabular features w.indow in the main conepr iek is turned into the tople el

behavior editor. All behaviors currently defined for the concept are show n Each has a name and a type There inr .

three types of behaviors currently allowed: Rules, Procedures, and Methods. Existing behaviors can be edited or

new ones defined. A modified form of the Symbolics flaior e.iaminer can be accessed to shov vanous usetul ,

information about method combination and derivation.

Methods are simply flavor methods. Editing a method throws up a text editor windo * which can be interacted % ith

in normal editing style or in structure editing style. Editing or inputting a new rule packet accesses the Rule Editor %

Editing or inputting a new procedure accesses the Procedure Editor.

7.1 Editing Rules "

The rule language used by KR.EME is a language called FLEX [16], based in large part on the LOOPS rule

language. FLEX allo%s rules to be defined in rule packets. wtuch organize sets of rules that are meant to be run

together. In the KREME enironment, rule packets can be attached to concepts. just as if thex were functon-

methods In addition, they may be inherited b% more speciahzed concepts. FLEX incorporates a mechamrm tor

dealing with uncertainty, based on EMYCIN [19]. The FLEX runtime environment also provides an elementarn

S.-'historn and tracing mechanism, and an explanation system that produces pseudo-English explanations from rule

traces. For efficiency. FLEX also provides a means for rule packets to be compiled as LISP code, and run \,ithout

the rule interpreter present.

The KREME rule editor is built on top of the KREME structure editor. One defines and edits rules by specif ,..

and filling out portions of rule templates. The user refim these templates either by using the mouse to copy parts ot

existing rules or by pointing at slots to be filled and typing in the desired values. Once a rule-set has been

developed, the rule editor provides commands to run packets and debug them. It can also generate traces or rule

histones paraphrased in pseudo-Enghsh Mechanisms are also provided for deleting and reordering rules. and

loading and saving them from files. The rule editor is shov,.n in figure 7-1

33 0%

% 0

BBN Laboratories Incorporated Report No. 6543

S

.1

The rule editor is also tied to the KREME's knowledge integration subsystem. At present, all references to slots of

frames made in rules are checked for validit, by the knowledge integrator. If invalid, the user is alerted and maS

switch, if necessary, to editing the associated frame. If the problem was simply that he/she named a non-existent

slot, a valid one may be selected from a menu. In the near future, the knowledge integrator will also check such :'

cross-references in the opposite direction, as when a slot referred to by some rules is deleted or changed in the frame

editor. :7

KREME at present edits rules in the FLEX [16] rule language, In FLEX, rules come in rule packets. and the

KREME Rule Editor edits an entire packet at one time Rule packets provide a way to organize rules.

The forward chainig rule packets come in four vaneties, indicating the type of control mecharusm used for rule

finng

" do-I-rule-packets execute the first rule wkhose test .ucceeds.

" do-al-rule-packets execute all rules whose tests succeed. •.,¢
" Shile-I-rule-packets repeatedly test all rules. firing one. until no tests succeed. ,. .

* while-all-rule-packets repeatedly fire all rules whose tests succeed, until none succeed '.

Rule pakets are connected to KREME frame s% stems or other data contexts b\ specifying an access em ironmet•

An access enironment is an object that receies messages dealing with the accessing of values for references in the

rules It hand]e-, all message, to get or set the values of variables and their confidences. ,- ,.

7.2 The KRF\IE Rule Editor

Rules are defined and edited b , specif\ in, and fi-lin out portions of rule templates. To refine these templates 55,,

either use the mouse to cop, parts of existing rules or point at slots to be filled and type in the desired values. ,." "
.' '.?

There are also commands to run packets and debug them and to generate traces or rule histones paraphrased in

pseudo-English. and delete rules and reorder rules, and load and save rules from tiles.

34

%I
5-..


~~~Report No. 6543 .. 'BBN Laboratories Incorporated

Figure 7-1: The KREMfE Rule Editor I
Nip

.0

,.;

'9. p - 7. 7 - -

-- -+

- ,- '

- Wr~%
-- - - ',

__ = S bb:b;-bL-_

",.

-_. .. _ 4 a -,

. ... L. -" .-

'i.--.

.',p

'41



BBN Laboratories Incorporated Report No. 6543
0as

%

branching or iteration: the mechanisms for procedural abstraction, specialization, and path or reference

reformulation that formed the heart of the language seemed to form the kernel of an extremely useful ]

representational facility.

The KREME representation language family includes a descendant of the STEAMN4ER procedure language, built " '

using KREME's library of knowledge representation primitives. Each KREME procedure has a name. a

description, an action that the procedure is meant to accomplish, a list of steps, and a list of ordering constraints that -

determine the partial ordering of the steps. Steps have an action and an object which names the conceptual class of

things that step acts upon. Procedures are attached to specific frames and can be "compiled" into flavor methods.
I

Each step in a procedure ma\ either be a pnmitive action or another procedure. If the object of a step defines a

procedure for the action of that step then this procedure is said to be a sub-procedure of the enclosing procedure.

For example, the ALIGN procedure attached to the concept SUCTION-LINE could have a step ALIGN <PUMfP>. If

the concept CENTRIFUGAL-PUMP. which is the object of this step for SUCTION-LINEs. defined a procedure for ,

the action ALIGN. then the step ALIGN <PLU\MP> could be expanded into the steps of the procedure for aligning a . .,

centrifugal pump. 
.%

7.4.1 Procedural Abstraction and Structure Mapping

For knowledge acquisition purposes, it would be verb useful if procedures were represented in an abstraction ,.5

hierarchy like that for frames. In a strong sense. it seems difficult to define exactly what it means for one abstract -.

procedure to subsume another. However. from an acquisition standpoint, much power can be gained b% allowing 4,

abstract procedures to form templates upon which more specific procedures can be built, and eventually providing ".' '

tools for automatic plan refinement Like those found m NOAH [ 131. For example. if you have some idea about ho. "

to grow plants in general. and you want to grow tomatoes, you %ill use your knowledge about growing plants m .

general as a starting point for learning about growing tomatoes. The final procedure for growing tomatoes will
', 

include some (presumabl\ more detailedi versions of steps in the more general procedure, and may also include ',

steps that are analogous to those used in growing other plants for which more detailed knowledge exists. 5

%.- .,0

The KREMIE Procedures editor has a mechanism for building templates of new procedures out of more abstract I

procedures. When a new procedure is being defined at a concept. the procedural abstraction function determines .'

whether any of that concept's parents have a procedure for accomplishing the same action. If so, an initial procedure

template is built by combirung the steps and constraints of all the inherited, more abstract procedures. The paths .' .4.

5For a detailed discussion of rtlated '.sue; see Carbonell 4) on deri ational anaI,,p,,a planning % ,

38 " -

.1''- . '



Report No. 6543 
BBN Laboratories Incorporated

(objects) of the steps are adjusted using the concept's slot equivalences to use "local" slot names, as much as-. _

~possible As yet this faclty does not ase the ability ( do detailed reasoning with constrints on steps as NOAH]

does. We expect to grealy expand this capability duing Phase Two of the project. 
.:,

-.-

;'

.- 'p

' A'

-V,

Sh

r 

".° ,l

3 
°  

, "d,' 
"  "t -" , ''" - " " " € .r . .. ," " " - €'-' .- , ," .- .- ,c ,,'.-• " - . . " '. " 0'

%°°'



- 5o

BBN Laboratories Incorporated Report No. 6543

'a"

~!s

° ..

a;, ,.

4oa-

pa



Report No. 6543 BBN Laboratories Incorporated

8. Knowledge Extension

One task faced by knowledge engineers is getting experts to express generali:ations about their domains of

expertise. While much of the detailed information about particular problems can be accessed and represented by

looking at specific examples and problems, the expert's abstract classification of problem types and the abstract a

features he uses to recognize those problem types are less directly available. Experienced knowledge engineers are

often able to discover and define useful generalizations which experts perceive as relevant to their own reasoning

'S-S processes. The experts may then suggest improvements, related generalizations, or more abstract generalizations.

Our initial experiment in knowledge-base extension in Phase I has been the development of a frame generali:anon

algorithm. Our current generalizer finds potentially useful generalizations by searching for sets of concept features

that are shared by several unrelated concepts.

When the generalizer finds a set of at least k features shared by at least m concepts. where k and m are user-settable

parameters, the system forms the most specific concept definition that would enclose all of the features but would

still be more general than any concept in the set. Since our simple algorithm has no other external notion of

"interestingness" it simply displays this potential new concept definution to the user. For example. gven three .

concepts that are all ANIMALs and independently define the slot WINGS, the generalizer would suggest forming a

specialization of ANIMAL with the slot WINGS, that these concepts would all specialize. If the user wanted to

introduce this concept. he would respond by naming the ne generalization (e.g.. FLYING-ANIMAL,. which would

then be classified and integrated with the network. The features that are enclosed by this new. more eeneral

concept. are automatically removed from each of the more specific concepts being generalized.

,.

.%:.

5..•

-"- "..'

.5"

La -5...

.5 '...

1-.5.

'-a"o

Y ,'; " - " " " ""'":""''"","-"""" ".""" ".""-.' ''" " """ "","".': " ,','S". "''-.'''-"-'',-'%""'-':.".:0"



BBN Laboratories Incorporated 
Report No. 6543 i'

" ,

a..

.a-

4'" .?

.

.4

°p

-' "4

I

'a

-U -,



Report No. 6543 BBN Laboratories Incorporated

7.3 The Rule Editor \ie%.

Many of the windows in the Rule Editor View should be familiar b) now. The complete hst is as follow s 0

I. Global Command Window displays global commands that can be selected by the user In this
example, the user has used the mouse to select Edit Packet. The user's selection is highlighted.

2. State Window displays the name of the packet, the network it is associated with, and other useful -1
information. .

3. Editor Stack Window displays the names of the items recently edited and some information on their
current state. Items in the editor stack window can be selected for editing with the mouse

4. Behavior Command Window is a menu of commands that apply to Rules and Rule Packets. "
IS (Behavior is another term for rule packets, or functional methods on instances of concepts. i

5. Current Edit Item Window displays the item that has been selected for editing

6. Dispav Related Items Window allows the user to view other rule packets and scroll through them
Rules and parts of rules can be copied from the Scroll Window into the Current Edit Item WindoA .

7. Editor Interaction Window displays screen prompts and user input The user's edits are made in this
window and then displayed in the Current Edit Item Window.

8. Related Behaviors Window displays an index of other rile packets that are related to the one
currently being edited. With the mouse, the user can rapidly scroll through this index and select a z
related rule packet for viewing or editing. '

To get into the Rule editor use the New Packet or Edit Packet command ir the global command window %i

Thereafter. the structure editor can be used in much the same way the Macro Structure Editor is used to edit

concepts. The Rule Structure Command Menu contains the commands:

5. * * Define Behavior is similar to Classify Concept. It makes the definition of the packet permanent. and
allows it to be run or attached to a concept.

* Similar Behavior - Creates a packet "ith the same rules, etc but gives it a new name. and presenLt it to X

be edited to make it different.

* Kill Behaior -Kills the definition of this packet.

* Displa% Packet -Displays the packet in the Display of Related Items Window.

When a whole rule packet is outlined, the user can choose to Edit Packet (:). or (R:) choose from a menu of Edit

Packet. Edit Basis or Display Lisp Form.

Other editing commands are found on the keywords and component pieces of packets and rules. For instance.

clicking left on Rule: places a nei (empty) rule in the packet, which can then be filled out by clicking on IF to add

a new condition (condiuons are treated as part of a conjunction) or THEN to add a new action. Clicking right gives

a menu of Add (Empty Rule). Copy One Rule from somewhere else into this packet, and Copy Rule Set which .

5.." copies all of the rule, trom another packet

Chcking over Type: gises the user a choice of the standard types of rule packets, descnbed above 0

35
V..5

* l P s =- ." .. e.-- 55' .rv%%. . S. S%...- . %. * % ,%S'~ - q , .5 % ., . * * . .. . -.. ,. *.5 5



BBN Laboratories Incorporated Report No. 6543 ,.'

Packet Classes: allows the user to specify a flavor to be mixed into the packet. Arguments: and Return

Variables: each allow the user to add a new one (L:) or choose from a menu of Add One, Add Several. Edit and

Replace.

When a whole rule is outlined, clicking left will be replace the rule with another rule that the user points at.

Clicking right gives a menu of Replace Rule, Edit Attributes and Delete Rule,

Whenever expressions appear (after the word Precondition:, or as parts of conditions or actions), the user may .

Replace the expression (L:), or choosing from a menu (R:) of

* Replace the expression with another one.

" Edit the expression as text.

• Delete the expression.

" Add Before another expression (copied from somewhere by pointing). le

" Add After another expression. '

" Exchange two expressions positions.

" Parenthesize a set of expressions together.

" Deparenthesize an expression into piecies. ,

" Evaluate the expression in the current context.

7.4 Procedures in the KREE Environment

An obvious weakness of many knowledge representation languages is their inability to handle declarativel.

expressed knowledge about procedures as partially ordered sequences of actions, particularly if that knowledge is

represented at multiple levels of abstraction. Although a number of systems have been developed that do various
'.

forms of planning. [5, 12, 13, 18]. most have not encoded their plans in an entirely declarative or trispectable ",
N

fashion. Certainly the current generation of expert system tools does not provide mechanisms geared to the

description of this kind of knowledge. Although it is clear that much of an expert's knowledge about a domain is

about procedures and their application, little work has been done on devising ways to capture that information

directly.

The STEAMER project [21] began to address the issue of declarative representations for procedures in the course of

developing a mechanism to teach valid steam plant operating procedures. The representation system developed for

this task had to be directly accessible to the students who were the system's users, and it had to serve as a source of .-

explanations when errors were made. STEAMER was able to describe these procedures, decompose them. shov.

how they were related to sundar procedures and. in general. deal with them at the "kno% ledge level' [10] rather than

as pieces of programs or rule sets Although the syntax of the language was quite primitive. with no provisions for ..,
,5' %"

36 "

_ J'
'a°

. " 5 
" ; "

, " ,. .. ,y .. . - , .. .- .", . % , . 2 , .'. '. J'. ." 2 . ,%," " ,, , j . . . ,.',,', " ', " " , .%" " % .. (' %" ",



Report No. 6543 BBN Laboratories Incorporated
2"..-

~-

9. Conclusion

The goal of the BBN Laboratories Knowledge Acquisition Project is to build a versatile experimental computer

environment for developing and maintaining large knowledge bases. We are pursuing this goal along two ",

complementary paths. First, we have constructed a flexible, extensible, Knowledge Representation. Editing and 0

Modeling Environment in which different kinds of representations (initially frames, rules, and procedures) can be

used. We are now using this environment to investigate acquisition strategies for a vanety of t)pes and

combinations of knowledge representations. In building and equipping this "sandbox", we have been adapting and

experimenting with techniques which we think will make editing. browsing, and consistency checking for each style

of representation easier and more efficient. so that knowledge engineers and subject matter experts can work ,"

together to build with significantly larger and more detailed knowledge bases than are presently practical. a

The second aspect of our research plan is the development of more automatic tools for knowledge base ,

reformulation and extension. An important part of this endeavor is the discovery, categorization and use of explicit

knowledge about knowledge representations: methods for viewing different knoxledge representations, techruques

for describing knowledge base transformations and extrapolations. techniques for finding and suggesting useful
generalizations in developing knowledge bases. semi-automatic procedures of eliciting knowledge from experts. and -,

extensions of consistency checking techniques to provide a mechanism for generatng candidate expansions of a

knowledge base.

We are attempting to provide a laborator for experimenting with new representation techruques and neA tools for

developing knowledge bases. If we are successful, many of the techniques developed in our laboraton will be

adopted by the comprehensive knowledge acquisition and knov, ledge representation systems required to support the

development and maintenance of future Al systems. .

-U-

43 "
'~~~% -. VV



BBN Laboratories Incorporated Report ,No. 65431 -":

"d.

-, It.

' a"-:

It
-

a."

.'-:,:

o" "

p

4'p

ne

,S;



Report No. 6543 BBN Laboratories Incorporated

10. Appendix A: Test Plan

10.1 Loading KREME from Cassette Tape

Each site can test KREME by loading KREME from tape according to the directions in tus AppendLx and

then editing the sample networks provided on the tape. Once KREME has been loaded, the document KREME A ,

User's Introduction BBN Report No. 6508 provides instructions on how to edit and create knowledge bases using

* KREN4E.

KREME requires a Symbolcs machine with Genera- 7 .0 already installed and with at least 18000 blocks free O

in its FE. If your machine has no tape dnve, you w dl have to read the tape on another machine that does ha' e one

and then transmit the bands to your machine (See section 10 -IWe wdl use the terms destination machine and tape

drive machine to refer to these two machines. Note that you must ha%e at least 18000 blocks free on the destination

machine's FEP as well as having at least 18000 blocks free on the FEP of the machine with the tape dn.e. "

10.1.1 Loading the FEP Files

There are four FEP Files on the tape Your machine ma% already ha~e inc-7-OGI-from-Genera-7.0.1oad If

so. do not create a FEP file for that file and do not load it from the tape.

Log in to the machine and create three (or four) FEP files in the following way

Create FEP File inc-7-0Gl-from-Genera-7-0.load 1290
Create FEP File inc-BBN-from-inc-genera-7-OG1.load 5600 0
Create YEP File Kreme-from-Boot7.load 9580 I.

Create PEP File Kreme.boot 1

Log out and halt the machine.

Put the FEP Files tape in the tape drive.

Type the following to the FEP:

scan V127-disk

(This teaches the FEP about disk restore ) Then type

disk restore

The machine will then ask if you've done Set Disk Type. Answer y The machine then asks if you want to restore

the FEP files on the tape In each case answer Y and press carnage return tIf you already ha'e the first band on '.our

system, answer N for that band. In each case. the system wdl then prompt

Itfth disk is new and has not ben iLrialued see your lxal stsern m zard

45

"..

4s ":S



a,.

BBN Laboratories Incorporated Report No. 6543 I
,4.

file to restore?

Accept the default file name by pressing carnage return.
I

The machine displays numbers as it reads from the tape The machine then asks about the other files in turn

Each time, answer V to restore the file and then press carnage return to accept the default file name . :.

10.1.2 Editing the FEP Files

Now you must edit the file Kreme.boot to set the CHAOS address correctly. To do this. boot the machine

(using a boot file other than Kreme boot) and edit Kreme.boot. Change the line containing the CHAOS address to

set it to the address of the destination machine. You can get the correct CHAOS address for the destination machine I
from the system manager or by looking at the address in another .boot file on the destination machine .*

You must also edit the Load Microcode tine in Kreme.boot so that it contains the number of the microcode

version on the host. To determine that number. ask the s% stem manager or look at a boot tile that boots a 7.0 A orld .

I-

Now log out and halt the machine

10.1.3 Booting KRENIE

Type the following to the FEP,

Boot Kreme. boot

Because the band is being booted at a site other than the site at which it was built. the machine wdl ask you if

the site is still BBN. Answer NO and the machine wil name itself DIS-LOCAL-HOST

If the machine has identity problems it thinks it is still at BBN ). the simplest way to deal with them is to

unplug the ethernet before booting Kreme boot. See your local system wizard ifyou want a more elegant solution

Once the boot is complete. you'll hae a KREME window with the

KRM: a

prompt. Now get to a Lisp Listener via

<select>L

Then log in with the command

(si: login-to-sys-host)

Logging in mn this way avoids interacting with the BBN system accounting software. Then load the carry-tape with

the command

(tape carry-load)
The catty-tape contains two sample KREME networks. mech-net.isp and org-net.lisp You will have to choose a

place on your machine to store these files.

•' ,*

46..

%I
I?_ : :



BBN Laboratories Incorporated

AX.You are now ready to use KRE.fiE with the help of KREME .A User's Introduction. Try loading a sample

network from one of the files you read off the carry-tape. 1,211

iI'

10.2 For Machines %%ith No Tape Drive

First. load the FEP Files from the tape onto the tape dnve machine by following the instructions in section

10.1.1. Then boot that mactune, using a boot file other than Kreme.boot. Then transmit the FEP Files to the

destination machine by typing the following to a Lisp Listener: (Answer Y when the system asks if you really want

to.)
.(si:transmit-band "fepO:>inc-7-OGl-from-genera-7-O.load" 0

desnna,,on-machine)

(si:transmit-band "fepO:>inc-bbn-from-inc-genera-7-O.load"
desnnatnon-mac/hine)

(si :transmit-band "fepO :>Kreme-fro-boot7 .load"
desnnation-rnachine)

Copy File fepO :>Kreme. boot desnnation- maclune I fepO >Kreme. boot

You are nov. finished using the machine %ith the tape drive. You may delete the KREME files on that

machine before going to the desunaton host.

Now continue %k ith the instru ions in section 10. 1.

0.4

%'>

A..=,.,

0 .

47. ?.-.,

-A-.,q



Report No. 6543 BBN Laboratories Incorporated '.1

Bibliography

1. Balzac, Stephen R. A System for the Interactive Classification of Knowledge. M.S. Thesis, M.I.T. Dept of E.E
and C.S., 1986.

2. Bobrow, D., Winograd, T. and KRL Research Group. Experience with KRL-0: One cycle of a knowledge
representation language. Proceedings of the Fifth International Joint Conference on Artificial Intelligence.
Cambridge, MA., August. 1977.

3. Brachmnan, R.J., Fikes, R.E., and Levesque, H.J. "Krypton: A Functional Approach to Knowledge
Representation". IEEE Computer. Special Issue on Knowledge Representation (October 1983).

4. Carbonell, Jaime G. Denvational Analogy: A theory of reconstructive problem solving and expertise acquisition. ',.
In Machine Learning: Volume II. Michalski. R. S., Carbonell, J. G. and Mtchell, T. M., Ed., Morgan Kaufmann
Pubhshers, Inc., Los Altos, CA. 1986, pp. 371-392.

5. Ernst, G.W. and Newell. A.. GPS: A Case Studs in GeneralihN and Problem Solving. Academic Press. New -,

York. 1969. .,

6. ntelliCorp KEE SofN.are De- elopment S'.stem Intel.hCorp, 1984.

7. Keene. Sonya E. and Moon. David. Flavors: Object-onented Programrming on Symbolics Computers. "
Symbolics. Inc.

8. Carnegie Group. Inc KnoiledgeCraft Carnegie Group, Inc.. 1985. .-

9. Moser, Margaret, An Overviev of NIKL. Section of BBN Report No. 5421, Bolt Beranek and Newman Inc.. e
1983.

4,

10. Newell. A. "The knowk ledge le',el AI lMaga-ne 2. 2 (1981). 1-20.

11. Roberts. B. and Goldstein. 1. P The FRL Manual. A.I. Lab. Memo 409, M.I.T., 1977.

12. Sacerdot. E. E. "Planrng in a Hierarch,, of Abstraction Spaces". Artificial Intelligence 5. 2 (1974). 115-135.

13. Sacerdou. Earl D A structure for plans and behavior. 109, SRI Artificial Intelligence Center. 19"75.

14. Schmolze, J. and Israel. D KL-ON E Semantics and Classification. In Research in Knowlege Representation
for Natural Langua ce Understandir:. Annual Report. I September 1982 to 3] August 1983. *4

BBN Report No. 5421. 1983

15. Schmolze. J.G.. Lipkis. T.A. Classification in the KL-ONE Knowledge Representation System Proc 8th
UCAI, 1983. .

16. Shapiro. Richard FLEX: A Tool tor Rule-based Programming. 5643. BBN Labs.. 1984.

17. Sidner, C.L.: Bates. M.: Bobrow. R.J.: Brachman. R.J.; Cohen, P.R.; Israel. D.J.: Webber. B.L.. and Woods.
W.A. Research in Knowledge Representation for Natural Language Understanding: Annual Report. BBN Report
No. 4785, Bolt Beranek and Newman Inc.. November. 1981.

18. Stefik. Mark. "Planning with Constraints: MOLGEN". Artificial Intelligence 16. 2(1981), 111-169 .

19. van Melle, W. A domain independent production-nile system for consultation programs Proceedings of
UICAI-6, August, 1979. pp. 9:3-925.

20. Vilain, Marc. The Restrcted Language Arcutecture of a Hybrid Representation System. Proceedings.
UCAI-85, International Joint Conferences on Artificial Intelligence, Inc., August. 1985, pp. 547.551. .

21. Williams. M.. Hollan. J. and Stevens. A. "An Overview of STEA.MER: An Advanced Computer-Assisted
Instruction System for Propulsion Engineenng" Behaor Research Methods and Instrumentanon 1$ (41981 1. 85-90

48

P 4- -. * .* 4 .'.4 p . 4-



4.

/ .X

7L4. -,
"S J


